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SUMMARY 

In the last decade, statistical modelling of landslide susceptibility by GIS has become a major topic of 
research. Despite some advancements, particularly through the bayesian approach based on the 
concept of “weight of evidence”, some unsolved questions may be asked: (i) what is the influence of the 
input data set on the quality of the simulations and (ii) how can we resolve the effect of violating the 
conditional independence assumption. This paper presents a strategy to collect relevant geographical 
information for reducing subjectivity in landslide susceptibility zonation in complex mountainous 
environments and stresses the different ways to reduce information redundancy. 

 
KEYWORDS: landslide susceptibility, geographical information, GIS modelling, conditional 
independence. 

 
INTRODUCTION 

Risk assessment and modelling through GIS (floods, Shanker et al., 2003; earthquakes, 
Recifea & Capolongo, 2002) has become a key topic of interest for geoscientists, engineers and end-users 
in the last decade (Agent, 2004). Especially, most relevant progress has been accomplished in landslide 
susceptibility assessment at both medium (1:25 000) and large (1:10 000) scales (Carrara et al., 1995; 
Soeters & van Westen, 1996; Aleotti & Chowdury, 1999 ). At these scales three methods have been 
developed to locate and characterise landslide-prone areas (ie. recognition of the slope instability factors, 
Aleotti & Chowdury, 1999): 

• a qualitative approach, based on expert knowledge (Wachal & Hudak, 1999; van Westen et al., 2000); 
• a deterministic approach, incorporating geotechnical data to evaluate a safety factor of the hillslope, 

used at very large scales (1:5 000 and less) (Terlien & van Westen, 1995); 
• a statistical or probabilistic approach, used at medium scales (1:25 000 or 1:10 000, Aleotti & 

Chowdury, 1999; van Westen et al., 2003), and based on the observed relationship between each factor 
and the past and present landslide distribution (Carrara et al., 1995). 

The underlying concept of these GIS-based (raster) methods is the "terrain unit" or “homogeneous 
unit” (Carrara et al., 1995) the portion of land surface which contains a set of ground parameters which 
differ from the adjacent units across definable boundaries. The aim is to predict the behaviour of a 
dependent variable (landslide susceptibility) through a set of known a priori independent variables 
(ground parameters). The statistical approach has been the object of several studies and is often 
considered as the most objective method avoiding the problem of the expert subjectivity (Soeters & van 
Westen, 1996). Moreover, statistical methods are useful in landslide mapping because a few set of data 
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can produce meaningful results (van Westen, 2000). Nevertheless, the strength of this functional approach 
is directly dependent on the quality and quantity of data collected (map scale, typology, precision, Carrara 
et al., 1995). The strategy to collect relevant geographical information for reducing subjectivity in 
landslide susceptibility zonation at 1:10 000 scale in complex mountainous environments is discussed in 
this paper. 

 

POSITION OF THE PROBLEM AND OBJECTIVES 

The statistical approach can be applied following different techniques, either bivariate (weight of 
evidence, logistic regression, fuzzy logic), or multivariate (multiple regression, discriminant analysis), 
which differs on the statistical procedure used (Carrara et al., 1995; van Westen et al., 2003); they are all 
based on conditional analysis which attempts to assess the probabilistic relationship between relevant 
factors and the occurrence of landslide over a given region. Bivariate techniques are generally based on 
the Bayes theorem according to which frequency data, such as landsliding area or number of landslides, 
can be used to calculate probabilities that depend on knowledge of previous events. Therefore the 
technique is dependent on the quality of data and on the assumption of their statistical independence. 
However, few studies show (i) how to define a set of information sources adapted and (ii) how to avoid 
the problem of conditional independence (CI) (Bonham-Carter, 1994). When the evidence from several 
ground parameters is combined, the weight of each parameter is calculated independently and then 
combined in a single equation (Agterberg et al., 1993; Bonham-Carter, 1994) through which posterior 
probabilities are calculated, that may not be identical as those calculated directly from the data. Therefore, 
this type of calculation requires the assumption of CI in order to reduce the redundancy of information. In 
practice, the assumption of CI is always violated, and, following Bonham-Carter (1994), some questions 
arise: How serious is this violation? What can be done to mitigate the effects of violating CI? What is the 
magnitude of the problem and what are the maps causing the most difficulty? This can be evaluated 
through the analysis of a pairwise test supported by a χ2 statistical test (Spiegelhater & Kill-Jones, 1984; 
Bonham-Carter, 1994). 

The objective of this article is to propose an overall strategy of relevant data collection, especially 
through (i) the identification of the input data causing the most problems on CI violation, (ii) the 
definition of the minimal number of landslides to introduce in the modelling study, (iii) the certainty of 
the map, in order to obtain a robust representation of landslide susceptibility for a given area. The article 
discusses the choice of the best dataset to obtain reliable results at 1:10 000 scale (national or regional 
end-users products, built database) and stresses the different ways to reduce information redundancy. The 
study site is the Barcelonnette Basin (South French Alps) known for its numerous slope instabilities and 
its complex morphology (Maquaire et al., 2003).  

 

METHODOLOGY 
Landslide susceptibility maps are computed according to the bayesian “weight of evidence” (WofE) 

method proposed initially by Agterberg et al. (1993) and Bonham-Carter (1994) for mineral exploration 
mapping, and adapted by Sterlacchini (2000) and van Westen et al. (2003) for landslides zonation. The 
model is based on the following assumptions (Carrara et al., 1995): (i) future landslides will be triggered 
under the same circumstances as in the past, (ii) all controlling factors are known and included in the 
model, (iii) all past and actual landslides are identified in the study area. 

Weight of evidence modelling: principles 

The WofE modelling technique is the log-linear version of the general bayesian theorem which uses a 
probability framework, based on the idea of prior and posterior probability, to solve the problem of 
combining multiple data sets. The prior probability is the probability that a terrain unit contains the 
response variable (Rv, the landslides) before considering the existing predictor variables (Pv, the 
favourable ground conditions factors). This model is fundamentally based on the calculation of positive 
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and negative weights (W+ and W-), the magnitude of which depends on the measured association between 
the response variable and the predictor variables. 

  [1]
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where B is the class of the Pv and D is the Rv. The symbol “ – “ represents the absence of the Pv and/or 
Rv. The model is expressed in an odds form (ratio of the probability that an event will occur to the 
probability that it will not occur). 

Being the model in a log-linear form, the weights can also be added. Therefore the contrast C 
(C = W+ - W-) gives an overall measure of the degree of spatial association between the predictor 
variables and the response variable, in each precise geographic location. The contrast C has a null value 
when a predictor variable has a distribution which is spatially independent in relation to the response 
variable. So the contrast value is a first important basis for accepting (or rejecting) the Pv as a real 
predictor themes, evaluating the level of spatial correlation between a precise Pv and the Rv. The 
calculation of the W+ and W- values for all the selected predictor evidences allows the calculation of the 
posterior probability, which updates (increases or decreases) the prior probability. When several predictor 
themes are combined, the areas with the greatest coincidence of low/high weights produce the 
lowest/greatest probability of occurrence of the Rv.  

Stepwise map combination 

The model is implemented in an ArcView 3.2® free extension called ArcSDM (Kemp et al., 2001). 
The model calculates automatically the posterior probabilities for each terrain unit and the χ2 value to 
determine whether the assumption of CI is satisfied. Calculation are performed on a per-pixel basis. The 
procedure to determinate the best dataset (Vp) incorporates the stepwise combination of maps, added one 
by one. The stepwise resulting scores are analysed on a cumulative curve representing the cumulative 
area versus the posterior probability; three susceptibility classes are defined (low, average, high).  

In order to accept or to reject each Pv, the CI test is based on a pairwise test and χ2 test for each new 
Pv introduced in the model. The pairwise test between two Pv involves a contingency tables calculation, 
applicable only at locations at which pixel of Rv occur. The rows of the contingency table are the classes 
of the first Pv (Pv1), and the columns of the contingency table are the classes of the second Pv (Pv2). 
Each cell (i, j) of the table records the number of Rv occurring for a specific overlap of the i-th class of 
Vp1 and the j-th class of the Vp2. The calculation of the χ2 test involves estimating the expected number 
of pixel of Rv in each cell, under the assumption that Pv1 is independent of Pv2. The expected value in a 
cell is calculated as the product of the marginal pixels divided by the grand total number of pixels. χ2 test 
is a measure of the differences between the observed and expected frequencies, summed over all cells of 
the table. The null hypothesis of CI is tested by determining if the measured χ2 value exceeds a theoretical 
χ2 value, given the number of degrees of freedom (υ) and the level of significance (α). 

[3] υ = [( r-1) (c-1)] 
where υ is the degree of freedom; r the number of class for Pv1 and c the number of class for Pv2; the ls 
is taken as 95% or α = 0.05. 

In order to evaluate the success rate of the model, the relative error is calculated for each simulation. 
The triggering zone of each landslides are compared with the zone considered as the more susceptible 
(high susceptible class) following the equation [4]. It is assumed that the landslides map give the “true” 
situation. 

[4] y
yx −=ξ  
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where ξ is the relative error, x the real value (number of pixel of the landslide triggering zones) and y the 
calculated value (number of pixel of the high susceptible class considered).  

Certainty of simulations 

In order to obtain very robust model a test of uncertainty is performed on the basis of the variance of 
the weights (Bonham-Carter, 1994). As indicated by Bonham-Carter (1994), the variance of the weights 
can be used to calculate the variance of the posterior probability (pp) at each location, and to generate an 
uncertainty surface linked to the simulation. This measure is based on the calculation of the Studentized 
value (Sv) of the pp. This Sv is obtain by dividing the pp by its standard deviation [5]: 

[5] s(pp)
ppSv =  

where Sv is the Studentized value, pp is the posterior probability and s the standard deviation. This 
ratio is sued in order to test the hypothesis that pp=0. As long as the ratio is relatively large, implying that 
the posterior probability is large compared with the standard deviation, then the pp is more likely to be 
“real”. For Bonham-Carter (1994) the ideally ratio must be larger 1.5 or even 2, either a certainty 
calculation between 92.5% and 97.5% (Davis, 2002). In the case of the Barcelonnette Basin and 
according Davis (2002), some thresholds for the Sv (1.28; 1.64; 1.96; 2.33) have been used to know the 
calculation certainty of the pp (90%; 95%; 97.5%; 99%). The confidence area obtained is compared to the 
high susceptibility class area defined by the cumulative curve. This “certainty test” gives an information 
about the confidence of the classes defined by the analysis of the cumulative curve. 

 

STUDY AREA AND DATA ACQUISITION 
Study area 

The study focused on the north facing slope of the Barcelonnette Basin (French South Alps). The area 
extends over 100km2. Surrounding crests are capped by limestone, sandstone and flyschs. Below the 
crests lower slopes are underlain by less resistant callovo oxfordian black marls. Slope angles are 
comprised between 8° and 36°, they are covered by morainic deposits (77% of the surface) and by forest 
(62%). Geomorphological forms comprise very steep (>45°) naked badlands areas, regular slopes and 
hummocky topography due to heterogeneous accumulations zones (Maquaire et al., 2003). Various 
factors including lithology, tectonics, climate and the evolving land use have given rise to numerous slope 
movements like rotational landslides, earthflows or debris flows. The behaviour of these slope 
instabilities have been studied during the last ten years by several research teams (Flageollet et al., 1999; 
Buma, 2000). More than 350 active landslides have been inventoried and only rotational and translational 
landslides, which represent the majority of the active landslides (71% of the total number of observed 
active landslides in 2000), are considered in this study. Complex landslides such as rockfalls, earthflows 
and debris flows are not discussed. It is assumed that rotational and translational landslides have the same 
controlling factors. Firstly, the best set of data to minimize the problem of CI is identified; secondly, the 
area representing the landslide complex is stressed; thirdly, the minimal number of landslides to introduce 
in the simulation is discussed on the basis of a random sampling, fourthly the certainty of simulation is 
discussed. 

Data acquisition  

The landslide susceptibility maps are built through the statistical computation of six categories of 
ground parameters (also controlling factors, Table 1). These input data are derived from existing national 
databases, from the digitization of aerial photographs, from the statistical treatment of satellite imageries, 
from the interpretation of maps and from field observations (Table 1). Originally, data are computerized 
in different formats (raster format, vector format, data needed to be digitized before rasterization, 
Table 1). The best way to produce the initial dataset is discussed in the following sections. 
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RESULTS 
Best dataset to optimise CI assumption 

Several combinations of data are tested in order to increase the quality of the dataset. Calculation 
were performed by introducing successively the maps which require the longest pre-processing. To test 
the performance of the model, the simulated susceptibility maps are compared to a map of the observed 
events (called inventory map) in 2000. Results indicate that the available (existing) databases are not 
adapted to landslide susceptibility assessment at a 1/10 000 scale for complex environments (topography, 
vegetation). It is necessary to adapt the data to the particularities of the site, in terms of spatial resolution, 
accuracy and nomenclature (Thiery et al., 2003). The optimal dataset is represented on Figure 1. 

 
Table 1: Input data retained for susceptibility assessment. 
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Area of landslides to model 

Simulations are performed taking into account as Rv (i) the area of the landslides (AL), (ii) the area of 
the triggering zone (ATZ), (iii) one pixel representing the barycentre of the landslide complex (BL), (iv) 
one pixel representing the barycentre of the triggering zone (BTZ), (v) one pixel representing the most 
frequent linear combination of factors of the triggering zone (CTZ). 

 
 

Figure 1: Flow-chart of the best way to obtain good results and precision  
index depending on the databases (Thiery et al, 2003). 

 
Simulations with AL and ATZ are rejected with the null hypothesis H0. For the two simulations, it is 

impossible to determined the Pv which causes problem of conditional dependence. Nevertheless, for 
simulation with AL, cumulative curve presents some thresholds and the three susceptibility classes can be 
identified. But, for this map the relative error is very high, some flat zones are considered by the model 
with high susceptibility because the accumulation area of each landslides with low slopes are taking into 
account in the simulation. 

Simulations with one pixel (BL, BTZ, CTZ) give best results, and especially with CTZ. However, 
some problem of conditional dependance appears when the Pv “lithology” and “stream with buffer” are 
introduced in the model. The null hypothesis H0 is rejected at each time. The best combination is obtained 
with the 234 CTZ (relative error ξ represents 7%)., slope map, aspect map, topographical concavities and 
convexities, deposit thickness map, landcover map. 
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 SLO SD LAND LIT STR CUR 

SD del =54 
72.1   31      

LAND del = 72 
92.8  13.9 

del =108 
133.5   31     

LIT del = 36 
51   54.2 

del = 54  
72.1   5.5 

del = 72 
92.8  10.9    

STR del = 12 
21  4.7 

del = 14  
23.7   4.4 

del = 24 
 36  48.9 

del = 12  21  
1.7   

CUR del = 12 
21   11.7 

del = 14 23.7  
7.3 

del =24 13.9  
36.4 

del = 52  
69.8   5.7 

del = 4    
9.4   1.4   

ASP del = 42 
58.1  23.7 

del = 63 82.5 
17.3 

del = 84 
106.4 21.1 

del = 48 65.1  
89.5 

del = 16 26.3  
28.2 

del = 14  
23.6   9.1 

Table 2: Selection of the Pv. In bold the Pv retained for the best simulation; SLO: slope classes map; 
SD: Surficial Deposits map; LAND: Landcover map; LIT: Lithology map ; STR: Stream map with 5 

buffer classes; CUR: Curvature map (concavities, convexities); ASP: Aspect map.  
With α = 0.05. del = degree of freedom, 72.1= theoretical χ2 , 31= measured χ2.  

 
Minimal number of landslides 

To optimise the collection and pre-processing of data (mapping time, document analysis, field 
survey), the minimal number of landslides to introduce in the model is estimated through a random 
sampling of the 234 CTZ. The different simulation indicate that 125 landslides (somehow 50% of the 
total number of observed landslides) can be considered as a indicative threshold for an acceptable 
landslide zonation in the Barcelonnette Basin with a relative error ξ of 17%. The figure 2b reinforces this 
opinion, cumulative curves with less than 125 CTZ do not give identifiable thresholds, it is difficult to 
define the three susceptibility classes. Nevertheless, cumulative curves with 125 CTZ or more present the 
same thresholds as the best cumulative curve obtained with 234 CTZ. 

 
Figure 2: Result of simulations. (a) Relative error for different number of CTZ and for different 

combination of predictive variable (Pv) with this following Pv: SLO, SD, LAND, LIT, STR, CUR. ASP. 
1 = SLO + SD. 2 = SLO + SD + LAND. 3 = SLO + SD + LAND + LIT. 4 = SLO + SD + LAND + STR. 

5 = SLO + SD + LAND + CUR. 6 = SLO + SD + LAND + CUR+ ASP.  
(b) cumulative curves with the surface area versus the posterior probability following  

the number of CTZ introduced in the model. 
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Certainty of the susceptibility class 

In order to check the certainty of susceptibility map, the high susceptibility class is compared to the 
certainty calculation at different levels of certainty.  

The figure 3 shows results obtained for different simulations. The most interesting results are 
obtained with the simulations with 125 CTZ and 234 CTZ. The simulation with 125 CTZ gives good 
certainty up to 95% level. For simulation with 234 CTZ the different “certainty test” for high 
susceptibility class are better for the four certainty thresholds, with a little decrease of the certainty 
calculation from 95% to 97.5% (89.5% to 89%). This is mainly due to the number of CTZ introduced in 
the model. More CTZ are introduced in the model, more the certainty increases. As mentions Bonham-
Carter (1994), if the degree of certainty is comprised between 92.5% and 100% the simulation are good in 
a statistical point of view. In our case this comparison confirm the relative error calculated for 125 CTZ 
and 234 CTZ. The test with this two simulations shows that the high susceptibility class chosen by 
analysis of cumulative curve is good. It shows that with 50% of CTZ, statistic calculation and simulation 
map are very robust. Nevertheless this test must be used as a relative indicator. It is a guaranty to have 
high susceptibility class defined by subjective opinion closest the certainty of statistical calculation. 

 

Figure 3: Results of certainty test for simulation with AL, 234 CTZ and 125 CTZ. 
 

DISCUSSION AND CONCLUSION 
The relative error analysis with the best dataset indicates that the use of the Pv “landcover” (LAND) 

raised the overall accuracy of the susceptibility map from 32% to 19%. This result confirms some studies 
about the sensitivity of this modelling technique for this variable type (Sànchez, 2002; van Westen et al., 
2003).  

The use of others Pv such as “curvature map” and “aspect map” decrease respectively the relative 
error from 19% to 12.5% and from 12.5% to 7%. This type of Pv doesn’t need a laborious work of field 
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Figure 4: Susceptibility maps obtained by combination of different Pv;  

(a) Location of the study site. (b) Map obtained with the totality of the landslide areas. (c) Map 
obtained with SLO, SD,LAND and 234 CTZ. (d) Map obtained with SLO, SD,LAND, CUR, ASP 

and 234 CTZ. (e) Map obtained with the same Pv as (d) and 125 CTZ. 
 
observation, and/or imagery treatment as the landcover data. This information is derived from a DTM 
which gives some indication about the terrain morphometry according the algorithms used. The 
information derived from the DTM are very useful for statistical model, but they are available only if the 
DTM has good precision for the scale of work. For example the National Height Elevation Database 
BDAlti ® (spatial resolution of 50m) is not adapted, in particular for complex mountainous environments.  
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The relative error is very large and final results are very biased. In this specific case, a new DTM was 
elaborated by digitization of elevation lines from topographic maps at 1:10 000 scale. Different 
algorithms were performed and compared (Borgefors distance method, radial basis method, kriging 
method). Best results were obtained by complex interpolation method as kriging method with specific 
variogram. Also it is essential to have precise and adapted topographic information (metric resolution, 
and elevation precision close to the meter), built either by precise digitisation of elevation lines (time-
consuming task), or derived from expensive technical image processing (photogrammetry, laser scanning) 
to obtain good simulation for this scale. 

For the Pv “lithology” the different simulations indicate a conditional dependence with the Pv “slope 
classes map” then the relative error increases (Table 2). In order to reduce the conditional dependence 
problem, a combination of this two Pv was attempted, as recommended by Bonham-Carter (1994). 
Despite this combination, the χ2 test is rejected. The model based on the use of Pv “lithology” increases 
only the high susceptibility on area with slope between 8° to 27° and decreases the probability on other 
zones with slopes above 27°. Contrary to scientist belief, the lithology is not a good predictive variable 
for all study case, especially when the slope morphology depends on the surficial deposits. Besides, 
majority of Barcelonnette landslides occurs in surficial deposits as morainic deposits, de facto the Pv 
“lithology” is rejected of simulations. 

The procedure described in this analytical study stresses the importance of the Rv and of the Pv on the 
output simulations. The bayesian “Wofe” statistical method with the χ2 test, calculation of relative error 
and certainty test appears as an efficient tool for landslide susceptibility assessment at 1:10 000 scale, 
once the quality on the input data has been evaluated. But as mentioned by van Westen et al. (2003), this 
type of model needs an expert opinion. Landslide data are the result of the subjective interpretation of the 
scientist. For instance, if landslide location is very different because another people has collected 
information, the calculation of posterior probability can be very diverse. 

This error can be reduced by a careful field survey. Another point very important lies in the choice of 
the response variable (Rv) and the predictor variable (Pv). If the Rv is complex and/or if some Pv are not 
precise enough or have no relations, in an expert point of view, the method presents some limitation, 
especially for the combination of Pv recommended by Bonham-Carter (1994). For the Barcelonnette 
Basin, this limit has been solved (i) by a strong analysis on the part of landslides to model, (ii) by 
statistical analysis and expert reflection on each Pv which causes conditional dependence problem. Thus, 
the strategy adopted on Rv and Pv for this complex area gives a new approach to reduce redundancy 
problem and to obtain a robust statistical model and landslides susceptibility maps closest the reality at 
1:10 000 scale. Nevertheless, despite field verification, statistical analysis and expert reflection, some 
unstable areas are not predicted by the model. This mismatch can be explained by the following: a few 
landslides occurs in areas represented by low posterior probability values for some classes of factors (i.e. 
low slope angles, landcover with low posterior probability values such as natural grassland and pastures, 
colluvium for surficial deposits). 

 As calculation is based on the number of landslides observed in each class, classes characterized by a 
wide area and a small number of landslide locations result in low posterior probability. Hence, the 
simulated maps underestimate landslide susceptibility in few locations. Nevertheless, the different tests 
used (pairwise test, certainty test) indicate that the model seems robust to predict landslide location; it 
could be improved by introducing temporal data on landslides. 
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